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Preface

This book is the fourth in a series based on my online algorithms
courses that have been running regularly since 2012, which in turn
are based on an undergraduate course that I taught many times at
Stanford University. Part 4 assumes at least some familiarity with
asymptotic analysis and big-O notation, graph search and shortest-
path algorithms, greedy algorithms, and dynamic programming (all
covered in Parts 1–3).

What We’ll Cover in This Book

Algorithms Illuminated, Part 4 is all about NP-hard problems and
what to do about them.

Algorithmic tools for tackling NP-hard problems. Many real-
world problems are “NP-hard” and appear unsolvable by the types
of always-correct and always-fast algorithms that have starred in
the first three parts of this book series. When an NP-hard problem
shows up in your own work, you must compromise on either correct-
ness or speed. We’ll see techniques old (like greedy algorithms) and
new (like local search) for devising fast heuristic algorithms that are
“approximately correct,” with applications to scheduling, influence
maximization in social networks, and the traveling salesman problem.
We’ll also cover techniques old (like dynamic programming) and new
(like MIP and SAT solvers) for developing correct algorithms that
improve dramatically on exhaustive search; applications here include
the traveling salesman problem (again), finding signaling pathways in
biological networks, and television station repacking in a recent and
high-stakes spectrum auction in the United States.

Recognizing NP-hard problems. This book will also train you
to quickly recognize an NP-hard problem so that you don’t inadver-

vii



viii Preface

tently waste time trying to design a too-good-to-be-true algorithm for
it. You’ll acquire familiarity with many famous and basic NP-hard
problems, ranging from satisfiability to graph coloring to the Hamil-
tonian path problem. Through practice, you’ll learn the tricks of the
trade in proving problems NP-hard via reductions.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points. The “Field Guide to Algorithm Design” on page 236
provides a bird’s-eye view of how the topics of this book fit into the
bigger algorithmic picture.

The starred sections of the book are the most advanced ones. The
time-constrained reader can skip these sections on a first reading
without any loss of continuity.

Topics covered in the first three parts. Algorithms Illumi-
nated, Part 1 covers asymptotic notation (big-O notation and its
close cousins), divide-and-conquer algorithms and the master method,
randomized QuickSort and its analysis, and linear-time selection algo-
rithms. Part 2 is about data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (rang-
ing from deduplication to social network analysis). Part 3 focuses
on greedy algorithms (scheduling, minimum spanning trees, cluster-
ing, Huffman codes) and dynamic programming (knapsack, sequence
alignment, shortest paths, optimal search trees).

Skills You’ll Learn From This Book Series

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly
fast subroutines for processing data as well as several useful data
structures for organizing data that you can deploy directly in your own
programs. Implementing and using these algorithms will stretch and
improve your programming skills. You’ll also learn general algorithm
design paradigms that are relevant to many different problems across
different domains, as well as tools for predicting the performance of
such algorithms. These “algorithmic design patterns” can help you
come up with new algorithms for problems that arise in your own
work.
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Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures that these books cover. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After you learn about algorithms, you’ll
start seeing them everywhere, whether you’re riding an elevator,
watching a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms
in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

There are a number of excellent more traditional textbooks about
algorithms, any of which usefully complement this book series with
additional details, problems, and topics. I encourage you to explore
and find your own favorites. There are also several books that, unlike
these books, cater to programmers looking for ready-made algorithm
implementations in a specific programming language. Many such
implementations are freely available on the Web as well.
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Who Are You?

The whole point of these books and the online courses upon which
they are based is to be as widely and easily accessible as possible.
People of all ages, backgrounds, and walks of life are well represented
in my online courses, and there are large numbers of students (high-
school, college, etc.), software engineers (both current and aspiring),
scientists, and professionals hailing from all corners of the world.

This book is not an introduction to programming. Ideally, you’ve
already acquired basic programming skills, such as the use of arrays
and recursion, in some standard programming language (be it Java,
Python, C, Scala, Haskell, etc.). If you need to beef up your pro-
gramming skills, there are several outstanding free online courses that
teach basic programming.

We also use mathematical analysis as needed to understand how
and why algorithms really work. The freely available book Mathe-
matics for Computer Science, by Eric Lehman, F. Thomson Leighton,
and Albert R. Meyer, is an excellent and entertaining refresher on
mathematical notation (like

P
and 8), the basics of proofs (induction,

contradiction, etc.), discrete probability, and much more.

Additional Resources

These books are based on online courses that are currently running on
the Coursera and edX platforms. I’ve made several resources available
to help you replicate as much of the online course experience as you
like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available at www.
algorithmsilluminated.org. These videos cover all the topics in
this book series, as well as additional advanced topics. I hope they
exude a contagious enthusiasm for algorithms that, alas, is impossible
to replicate fully on the printed page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

www.algorithmsilluminated.org
www.algorithmsilluminated.org
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End-of-chapter problems. At the end of each chapter, you’ll find
several relatively straightforward questions that test your understand-
ing, followed by harder and more open-ended challenge problems.
Hints or solutions to all of these problems (as indicated by an “(H)” or
“(S),” respectively) are included at the end of the book. Readers can
interact with me and each other about the end-of-chapter problems
through the book’s discussion forum (see below).

Programming problems. Several of the chapters conclude with
suggested programming projects whose goal is to help you develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity via
the forums available at www.algorithmsilluminated.org.

Changes Since the First Printing

The second printing of this book (July 2021) includes a few minor
improvements throughout the text and a corrected reduction from
the 3-SAT problem to the directed Hamiltonian path problem (Sec-
tion 22.6).

Acknowledgments

These books would not exist without the passion and hunger supplied
by the hundreds of thousands of participants in my algorithms courses
over the years. I am particularly grateful to those who supplied
detailed feedback on an earlier draft of this book: Tonya Blust, Yuan
Cao, Leslie Damon, Tyler Dae Devlin, Roman Gafiteanu, Blanca
Huergo, Jim Humelsine, Tim Kearns, Vladimir Kokshenev, Bayram
Kuliyev, Clayton Wong, Lexin Ye, and Daniel Zingaro. Thanks also to
several experts who provided technical advice: Amir Abboud, Vincent
Conitzer, Christian Kroer, Aviad Rubinstein, and Ilya Segal.

www.algorithmsilluminated.org
www.algorithmsilluminated.org
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I always appreciate suggestions and corrections from readers.
These are best communicated through the discussion forums men-
tioned above.

Tim Roughgarden
New York, NY
June 2020



Chapter 19

What Is NP-Hardness?

Introductory books on algorithms, including Parts 1–3 of this series,
suffer from selection bias. They focus on computational problems that
are solvable by clever, fast algorithms—after all, what’s more fun and
empowering to learn than an ingenious algorithmic short-cut? The
good news is that many fundamental and practically relevant problems
fall into this category: sorting, graph search, shortest paths, Huffman
codes, minimum spanning trees, sequence alignment, and so on. But
it would be fraudulent to teach you only this cherry-picked collection
of problems while ignoring the spectre of computational intractability
that haunts the serious algorithm designer or programmer. Sadly,
there are many important computational problems, including ones
likely to show up in your own projects, for which no fast algorithms
are known. Even worse, we can’t expect any future algorithmic
breakthroughs for these problems, as they are widely believed to be
intrinsically difficult and unsolvable by any fast algorithm.

Newly aware of this stark reality, two questions immediately come
to mind. First, how can you recognize such hard problems when they
appear in your own work, so that you can adjust your expectations
accordingly and avoid wasting time looking for a too-good-to-be-true
algorithm? Second, when such a problem is important to your appli-
cation, how should you revise your ambitions, and what algorithmic
tools can you apply to achieve them? This book will equip you with
thorough answers to both questions.

19.1 MST vs. TSP: An Algorithmic Mystery

Hard computational problems can look a lot like easy ones, and telling
them apart requires a trained eye. To set the stage, let’s rendezvous
with a familiar friend (the minimum spanning tree problem) and meet
its more demanding cousin (the traveling salesman problem).

1



2 What Is NP-Hardness?

19.1.1 The Minimum Spanning Tree Problem

One famous computational problem solvable by a blazingly fast al-
gorithm is the minimum spanning tree (MST) problem (covered in
Chapter 15 of Part 3).1

Problem: Minimum Spanning Tree (MST)

Input: A connected undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.

Output: A spanning tree T ✓ E of G with the minimum-
possible sum

P
e2T ce of edge costs.

Recall that a graph G = (V,E) is connected if, for every pair v, w 2 V
of vertices, the graph contains a path from v to w. A spanning tree
of G is a subset T ✓ E of edges such that the subgraph (V, T ) is both
connected and acyclic. For example, in the graph

1

234

5

a b

c d

the minimum spanning tree comprises the edges (a, b), (b, d), and
(a, c), for an overall cost of 7.

A graph can have an exponential number of spanning trees, so
exhaustive search is out of the question for all but the smallest
graphs.2 But the MST problem can be solved by clever fast algorithms,

1To review, a graph G = (V,E) has two ingredients: a set V of vertices and
a set E of edges. In an undirected graph, each edge e 2 E corresponds to an
unordered pair {v, w} of vertices (written as e = (v, w) or e = (w, v)). In a directed
graph, each edge (v, w) is an ordered pair, with the edge directed from v to w.
The numbers |V | and |E| of vertices and edges are usually denoted by n and m,
respectively.

2For example, Cayley’s formula is a famous result from combinatorics stating
that the n-vertex complete graph (in which all the

�
n
2

�
possible edges are present)

has exactly nn�2 different spanning trees. This is bigger than the estimated
number of atoms in the known universe when n � 50.
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such as Prim’s and Kruskal’s algorithms. Deploying appropriate
data structures (heaps and union-find, respectively), both algorithms
have blazingly fast implementations, with a running time of O((m+
n) log n), where m and n are the number of edges and vertices of the
input graph, respectively.

19.1.2 The Traveling Salesman Problem

Another famous problem, absent from Parts 1–3 but prominent in
this book, is the traveling salesman problem (TSP). Its definition is
almost the same as that of the MST problem, except with tours—
simple cycles that span all vertices—playing the role of spanning
trees.

Problem: Traveling Salesman Problem (TSP)

Input: A complete undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.3

Output: A tour T ✓ E of G with the minimum-possible
sum

P
e2T ce of edge costs.

Formally, a tour is a cycle that visits every vertex exactly once (with
two edges incident to each vertex).

Quiz 19.1

In an instance G = (V,E) of the TSP with n � 3 vertices,
how many distinct tours T ✓ E are there? (In the answers
below, n! = n · (n� 1) · (n� 2) · · · 2 · 1 denotes the factorial
function.)

a) 2n

b) 1
2(n� 1)!

3In a complete graph, all
�
n
2

�
possible edges are present. The assumption that

the graph is complete is without loss of generality, as an arbitrary input graph
can be harmlessly turned into a complete graph by adding in all the missing edges
and giving them very high costs.
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c) (n� 1)!

d) n!

(See Section 19.1.4 for the solution and discussion.)

If all else fails, the TSP can be solved by exhaustively enumerating
all of the (finitely many) tours and remembering the best one. Try
exhaustive search out on a small example.

Quiz 19.2

What is the minimum sum of edge costs of a tour of the
following graph? (Each edge is labeled with its cost.)

b

c

1

2
3

4

6

a

d

5

a) 12

b) 13

c) 14

d) 15

(See Section 19.1.4 for the solution and discussion.)

The TSP can be feasibly solved by exhaustive search for only the
smallest of instances. Can we do better? Could there be, analogous
to the MST problem, an algorithm that magically homes in on the
minimum-cost needle in the exponential-size haystack of traveling
salesman tours? Despite the superficial similarity of the statements of
the two problems, the TSP appears to be far more difficult to solve
than the MST problem.
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19.1.3 Trying and Failing to Solve the TSP

I could tell you a cheesy story about, um, a traveling salesman, but this
would do a disservice to the TSP, which is actually quite fundamental.
Whenever you have a bunch of tasks to complete in a sequence, with
the cost or time for carrying out a task dependent on the preceding
task, you’re talking about the TSP in disguise.

For example, tasks could represent cars to be assembled in a
factory, with the time required to assemble a car equal to a fixed cost
(for assembly) plus a setup cost that depends on how different the
factory configurations are for this and the previous car. Assembling
all the cars as quickly as possible boils down to minimizing the sum
of the setup costs, which is exactly the TSP.

For a very different application, imagine that you’ve collected a
bunch of overlapping fragments of a genome and would like to reverse
engineer their most plausible ordering. Given a “plausibility measure”
that assigns a cost to each fragment pair (for example, derived from
the length of their longest common substring), this ordering problem
also boils down to the TSP.4

Seduced by the practical applications and aesthetic appeal of
the TSP, many of the greatest minds in optimization have, since at
least the early 1950s, devoted a tremendous amount of effort and
computation to solving large-scale instances of the TSP.5 Despite the
decades and intellectual firepower involved:

Fact

As of this writing (in 2020), there is no known fast algorithm
for the TSP.

What do we mean by a “fast” algorithm? Back in Part 1, we agreed
that:

4Both applications are arguably better modeled as traveling salesman path
problems, in which the goal is to compute a minimum-cost cycle-free path that
visits every vertex (without going back to the starting vertex). Any algorithm
solving the TSP can be easily converted into one solving the path version of the
problem, and vice versa (Problem 19.7).

5Readers curious about the history or additional applications of the TSP
should check out the first four chapters of the book The Traveling Salesman
Problem: A Computational Study, by David L. Applegate, Robert E. Bixby, Vašek
Chvátal, and William J. Cook (Princeton University Press, 2006).
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A “fast algorithm” is an algorithm whose worst-case
running time grows slowly with the input size.

And what do we mean by “grows slowly”? For much of this book series,
the holy grail has been algorithms that run in linear or almost-linear
time. Forget about such blazingly fast algorithms—for the TSP, no
one even knows of an algorithm that always runs in O(n100) time on
n-vertex instances, or even O(n10000) time.

There are two competing explanations for the dismal state-of-the-
art: (i) there is a fast algorithm for the TSP but no one’s been smart
enough to find it yet; or (ii) no such algorithm exists. We do not
know which explanation is correct, though most experts believe in
the second one.

Speculation

No fast algorithm for the TSP exists.

As early as 1967, Jack Edmonds wrote:

I conjecture that there is no good algorithm for the trav-
eling saleman [sic] problem. My reasons are the same as
for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.6

Unfortunately, the curse of intractability is not confined to the
TSP. We’ll see that many other practically relevant problems are
similarly afflicted.

19.1.4 Solutions to Quizzes 19.1–19.2

Solution to Quiz 19.1

Correct answer: (b). There is an intuitive correspondence between
vertex orderings (of which there are n!) and tours (which visit the
vertices once each, in some order), so answer (d) is a natural guess.
However, this correspondence counts each tour in 2n different ways:

6From the paper “Optimum Branchings,” by Jack Edmonds (Journal of
Research of the National Bureau of Standards, Series B, 1967). By a “good”
algorithm, Edmonds means an algorithm with a running time bounded above by
some polynomial function of the input size.
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once for each of the n choices of the initial vertex and once for each of
the two directions of traversing the tour. Thus, the total number of
tours is n!/2n = 1

2(n� 1)!. For example, with n = 4, there are three
distinct tours:

b

c

a

d

b

c

a

d

b

c

a

d

Solution to Quiz 19.2

Correct answer: (b). We can enumerate tours by starting with
the vertex a and trying all six possible orderings of the other three
vertices, with the understanding that the tour finishes by traveling
from the last vertex back to a. (Actually, this enumeration counts
each tour twice, once in each direction.) The results:

Vertex Ordering Cost of Corresponding Tour
a, b, c, d or a, d, c, b 15
a, b, d, c or a, c, d, b 13
a, c, b, d or a, d, b, c 14

The shortest tour is the second one, with a total cost of 13.

19.2 Possible Levels of Expertise

Some computational problems are easier than others. The point of
the theory of NP-hardness is to classify, in a precise sense, problems
as either “computationally easy” (like the MST problem) or “computa-
tionally difficult” (like the TSP). This book is aimed both at readers
looking for a white-belt primer on the topic and at those pursuing
black-belt expertise. This section offers guidance on how to approach
the rest of the book, as a function of your goals and constraints.

What are your current and desired levels of expertise in recognizing
and tackling NP-hard problems?7

7What’s up with the term “NP”? See Section 19.6.
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Level 0: “What’s an NP-hard problem?”

Level 0 is total ignorance—you’ve never heard of NP-hardness and
are unaware that many practically relevant computational problems
are widely believed to be unsolvable by any fast algorithm. If I’ve
done my job, this book should be accessible even to level-0 readers.

Level 1: “Oh, the problem is NP-hard? I guess we should either
reformulate the problem, scale down our ambitions, or invest a lot
more resources into solving it.”

Level 1 represents cocktail-party-level awareness and at least an
informal understanding of what NP-hardness means.8 For example,
are you managing a software project with an algorithmic or optimiza-
tion component? If so, you should acquire at least level-1 knowledge,
in case one of your team members bumps into an NP-hard problem
and wants to discuss the possible next steps. To raise your level to 1,
study Sections 19.3, 19.4, and 19.6.

Level 2: “Oh, the problem is NP-hard? Give me a chance to apply
my algorithmic expertise and see how far I can get.”

The biggest marginal empowerment for software engineers comes
from reaching level 2, and acquiring a rich toolbox for develop-
ing practically useful algorithms for solving or approximating NP-
hard problems. Serious programmers should shoot for this level (or
above). Happily, all the algorithmic paradigms that we developed
for polynomial-time solvable problems in Parts 1–3 are also useful
for making headway on NP-hard problems. The goal of Chapters 20
and 21 is to bring you up to level 2; see also Section 19.4 for an
overview and Chapter 24 for a detailed case study of the level-2
toolbox in action in a high-stakes application.

Level 3: “Tell me about your computational problem. [. . . listens
carefully . . . ] My condolences, your problem is NP-hard.”

At level 3, you can quickly recognize NP-hard problems when they
arise in practice (at which point you can switch to applying your
level-2 skills). You know several famous NP-hard problems and also

8Speaking, as always, about sufficiently nerdy cocktail parties!
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how to prove that additional problems are NP-hard. Specialists in
algorithms should master these skills. For example, I frequently draw
on level-3 knowledge when advising colleagues, students, or engineers
in industry on algorithmic problems. Chapter 22 provides a boot
camp for upping your game to level 3; see also Section 19.5 for an
overview.

Level 4: “Allow me to explain the P 6= NP conjecture to you on this
whiteboard.”

Level 4, the most advanced level, is for budding theoreticians
and anyone seeking a rigorous mathematical understanding of NP-
hardness and the P vs. NP question. If that qualifier doesn’t scare
you off, the optional Chapter 23 is for you.

19.3 Easy and Hard Problems

An oversimplification of the “easy vs. hard” dichotomy proposed by
the theory of NP-hardness is:

easy $ can be solved with a polynomial-time algorithm;
hard $ requires exponential time in the worst case.

This summary of NP-hardness overlooks several important subtleties
(see Section 19.3.9). But ten years from now, if you remember only a
few words about the meaning of NP-hardness, these are good ones.

19.3.1 Polynomial-Time Algorithms

To segue into the definition of an “easy” problem, let’s recap the
running times of some famous algorithms that you may have seen (for
example, in Parts 1–3):

Problem Algorithm Running Time
Sorting MergeSort O(n log n)

Strong Components Kosaraju O(m+ n)
Shortest Paths Dijkstra O((m+ n) log n)

MST Kruskal O((m+ n) log n)
Sequence Alignment NW O(mn)

All-Pairs Shortest Paths Floyd-Warshall O(n3)
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The exact meaning of n and m is problem-specific, but in all cases
they are closely related to the input size.9 The key takeaway from
this table is that, while the running times of these algorithms vary, all
of them are bounded above by some polynomial function of the input
size. In general:

Polynomial-Time Algorithms

A polynomial-time algorithm is an algorithm with worst-case
running time O(nd), where n denotes the input size and d
is a constant (independent of n).

The six algorithms listed at the beginning of this section are all
polynomial-time algorithms (with reasonably small exponents d).10

Do all natural algorithms run in polynomial time? No. For example,
for many problems, exhaustive search runs in time exponential in the
input size (as noted in footnote 2 for the MST problem). There’s
something special about the clever polynomial-time algorithms that
we’ve studied so far.

19.3.2 Polynomial vs. Exponential Time

Don’t forget that any exponential function eventually grows much
faster than any polynomial function. There’s a huge difference between
typical polynomial and exponential running times, even for very small
instances. The plot at the top of the next page (of the polynomial
function 100n2 versus the exponential function 2n) is representative.

Moore’s law asserts that the computing power available for a given
price doubles every 1–2 years. Does this mean that the difference be-
tween polynomial-time and exponential-time algorithms will disappear
over time? Actually, the exact opposite is true! Our computational
ambitions grow with our computational power, and as time goes on
we consider increasingly large input sizes and suffer an increasingly
big gulf between polynomial and exponential running times.

9In sorting, n denotes the length of the input array; in the four graph problems,
n and m denote the number of vertices and edges, respectively; and in the sequence
alignment problem, n and m denote the lengths of the two input strings.

10Remember that a logarithmic factor can be bounded above (sloppily) by a
linear factor; for example, if T (n) = O(n log n), then T (n) = O(n2) as well.
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Imagine that you have a fixed time budget, like an hour or a day.
How does the solvable input size scale with additional computing
power? With a polynomial-time algorithm, it increases by a constant
factor (such as from 1,000,000 to 1,414,213) with every doubling of
your computing power.11 With an algorithm that runs in time pro-
portional to 2n, where n is the input size, each doubling of computing
power increases the solvable input size by only one (such as from
1,000,000 to 1,000,001)!

19.3.3 Easy Problems

The theory of NP-hardness defines “easy” problems as those solvable
by a polynomial-time algorithm, or equivalently by an algorithm
for which the solvable input size (for a fixed time budget) scales
multiplicatively with increasing computational power:12

Polynomial-Time Solvable Problems

A computational problem is polynomial-time solvable if there
is a polynomial-time algorithm that solves it correctly for
every input.

11With a linear-time algorithm, you could solve problems that are twice as
big; with a quadratic-time algorithm,

p
2 ⇡ 1.414 times as big; with a cubic-time

algorithm, 3
p
2 ⇡ 1.26 as big; and so on.

12This definition was proposed independently by Alan Cobham and Jack
Edmonds (see footnote 6) in the mid-1960s.
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For example, the six problems listed at the beginning of this section
are all polynomial-time solvable.

Technically, a (useless-in-practice) algorithm that runs in O(n100)
time on size-n inputs counts as a polynomial-time algorithm, and
a problem solved by such an algorithm qualifies as polynomial-time
solvable. Turning this statement around, if a problem like the TSP
is not polynomial-time solvable, there is not even an O(n100)-time or
O(n10000)-time algorithm that solves it (!).

Courage, Definitions, and Edge Cases

The identification of “easy” with “polynomial-time
solvable” is imperfect; a problem might be solved in
theory (by an algorithm that technically runs in poly-
nomial time) but not in reality (by an empirically
fast algorithm), or vice versa. Anyone with the guts
to write down a precise mathematical definition (like
polynomial-time solvability) to express a messy real-
world concept (like “easy to solve via computer in the
physical world”) must be ready for friction between
the binary nature of the definition and the fuzziness
of reality. The definition will inevitably include or
exclude some edge cases that you wish had gone the
other way, but this is no excuse to ignore or dismiss
a good definition. Polynomial-time solvability has
been unreasonably effective at classifying problems as
“easy” or “hard” in a way that accords with empirical
experience. With a half-century of evidence behind us,
we can confidently say that natural polynomial-time
solvable problems typically can be solved with prac-
tical general-purpose algorithms, and that problems
believed to not be polynomial-time solvable typically
require significantly more work and domain expertise.

19.3.4 Relative Intractability

Suppose we suspected that a problem like the TSP is “not easy,”
meaning unsolvable by any polynomial-time algorithm (no matter
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how large the polynomial). How would we amass evidence that this is,
in fact, the case? The most convincing argument, of course, would be
an airtight mathematical proof. But the status of the TSP remains
in limbo to this day: No one has found a polynomial-time algorithm
that solves it, nor has anyone found a proof that no such algorithm
exists.

How can we develop a theory that usefully differentiates “tractable”
and “intractable” problems despite our deficient understanding of what
algorithms can do? The brilliant conceit behind the theory of NP-
hardness is to classify problems based on their relative (rather than
absolute) difficulty and to declare a problem as “hard” if it is “at least
as hard as” an overwhelming number of other unsolved problems.

19.3.5 Hard Problems

The many failed attempts at solving the TSP (Section 19.1.3) provide
circumstantial evidence that the problem may not be polynomial-time
solvable.

Weak Evidence of Hardness

A polynomial-time algorithm for the TSP would solve a
problem that has resisted the efforts of hundreds (if not
thousands) of brilliant minds over many decades.

Can we do better, meaning build a more compelling case of in-
tractability? This is where the magic and power of NP-hardness comes
in. The big idea is to show that a problem like the TSP is at least as
hard as a vast array of unsolved problems from many different scien-
tific fields—in fact, all problems for which you quickly know a solution
when you see one. Such an argument would imply that a hypothetical
polynomial-time algorithm for the TSP would automatically solve all
these other unsolved problems, as well!

Strong Evidence of Hardness

A polynomial-time algorithm for the TSP would solve thou-
sands of problems that have resisted the efforts of tens (if
not hundreds) of thousands of brilliant minds over many
decades.
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In effect, the theory of NP-hardness shows that thousands of com-
putational problems (including the TSP) are variations of the same
problem in disguise, all destined to suffer identical computational
fates. If you’re trying to devise a polynomial-time algorithm for an
NP-hard problem like the TSP, you’re inadvertently attempting to
also come up with such algorithms for these thousands of related
problems.13

We call a problem NP-hard if there is strong evidence of intractabil-
ity in the sense above:

NP-Hardness (Main Idea)

A problem is NP-hard if it is at least as difficult as every
problem with easily recognized solutions.

This idea will be made 100% precise in Section 23.3.4; until then, we’ll
work with a provisional definition of NP-hardness that is phrased in
terms of a famous mathematical conjecture, the “P 6= NP conjecture.”

19.3.6 The P 6= NP Conjecture

Perhaps you’ve heard of the P 6= NP conjecture. What is it, exactly?
Section 23.4 provides the precise mathematical statement; for now,
we’ll settle for an informal version that should resonate with anyone
who’s had to grade student homework:

The P 6= NP Conjecture (Informal Version)

Checking an alleged solution to a problem can be fundamen-
tally easier than coming up with your own solution from
scratch.

13Playing devil’s advocate, hundreds (if not thousands) of brilliant minds
have likewise failed to prove the other direction, that the TSP is not polynomial-
time solvable. Symmetrically, doesn’t this suggest that perhaps no such proof
exists? The difference is that we seem far better at proving solvability (with
fast algorithms known for countless problems) than unsolvability. Thus, if the
TSP were polynomial-time solvable, it would be odd that we haven’t yet found a
polynomial-time algorithm for it; if not, no surprise that we haven’t yet figured
out how to prove it.
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The “P” and “NP” in the conjecture refer to problems that can be
solved from scratch in polynomial time and those whose solutions can
be checked in polynomial time, respectively; for formal definitions,
see Chapter 23.

For example, checking someone’s proposed solution to a Sudoku
or KenKen puzzle sure seems easier than working it out yourself. Or,
in the context of the TSP, it’s easy to verify that someone’s proposed
traveling salesman tour is good (with a total cost of, say, at most 1000)
by adding up the costs of its edges; it’s not so clear how you would
quickly come up with your own such tour from scratch. Thus, intuition
strongly suggests that the P 6= NP conjecture is true.14,15

19.3.7 Provisional Definition of NP-Hardness

Provisionally, we’ll call a problem NP-hard if, assuming that the
P 6= NP conjecture is true, it cannot be solved by any polynomial-
time algorithm.

NP-Hard Problem (Provisional Definition)

A computational problem is NP-hard if a polynomial-time
algorithm solving it would refute the P 6= NP conjecture.

Thus, any polynomial-time algorithm for any NP-hard problem (such
as the TSP) would automatically imply that the P 6= NP conjecture
is false and trigger an algorithmic bounty that seems too good to
be true: a polynomial-time algorithm for every single problem for
which solutions can be recognized in polynomial time. In the likely
event that the P 6= NP conjecture is true, no NP-hard problem
is polynomial-time solvable, not even with an algorithm that runs
in O(n100) or O(n10000) time on size-n inputs.

14We’ll see in Problem 23.2 that the P 6= NP conjecture is equivalent to
Edmonds’s conjecture (page 6) stating that the TSP cannot be solved in polynomial
time.

15Why isn’t it “obvious” that the P 6= NP conjecture is true? Because the
space of polynomial-time algorithms is unfathomably rich, with many ingenious
inhabitants. (Perhaps you’ve come across Strassen’s mind-blowing subcubic
matrix multiplication algorithm, for example in Chapter 3 of Part 1?) Proving
that none of the infinitely many candidate algorithms solve the TSP seems pretty
intimidating!
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19.3.8 Randomized and Quantum Algorithms

Our definition of polynomial-time solvability on page 11 contemplates
only deterministic algorithms. As we know, randomization can be
a powerful tool in algorithm design (for example, in the QuickSort
algorithm). Can randomized algorithms escape the binds of NP-
hardness?

More generally, what about much-hyped quantum algorithms? (As
it turns out, randomized algorithms can be viewed as a special case
of quantum algorithms.) It’s true that large-scale, general-purpose
quantum computers (if realized) would be a game-changer for a
handful of problems, including the extremely important problem of
factoring large integers. However, the factoring problem is not known
or believed to be NP-hard, and experts conjecture that even quantum
computers cannot solve NP-hard problems in polynomial time. The
challenges posed by NP-hardness are not going away anytime soon.16

19.3.9 Subtleties

The oversimplified discussion at the beginning of this section (page 9)
suggested that a “hard” problem would require exponential time to
solve in the worst case. Our provisional definition in Section 19.3.7
says something different: An NP-hard problem is one that, assuming
the P 6= NP conjecture, cannot be solved by any polynomial-time
algorithm.

The first discrepancy between the two definitions is that NP-
hardness rules out polynomial-time solvability only if the P 6= NP
conjecture is true (and this remains an open question). If the conjec-
ture is false, almost all the NP-hard problems discussed in this book
are, in fact, polynomial-time solvable.

The second discrepancy is that, even in the likely event that the
P 6= NP conjecture is true, NP-hardness implies only that super-

16A majority of experts believe that every polynomial-time randomized al-
gorithm can be derandomized and turned into an equivalent polynomial-time
deterministic algorithm (perhaps with a larger polynomial in the running time
bound). If true, the P 6= NP conjecture would automatically apply to randomized
algorithms as well.

By contrast, a majority of experts believe that quantum algorithms are fun-
damentally more powerful than classical algorithms (but not powerful enough to
solve NP-hard problems in polynomial time). Isn’t it amazing—and exciting—how
much we still don’t know?
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polynomial (as opposed to exponential) time is required in the worst
case to solve the problem.17 However, for most natural NP-hard
problems, including all those studied in this book, experts generally
believe that exponential time is indeed required in the worst case.
This belief is formalized by the “Exponential Time Hypothesis,” a
stronger form of the P 6= NP conjecture (see Section 23.5).18

Finally, while 99% of the problems that you’ll come across will
be either “easy” (polynomial-time solvable) or “hard” (NP-hard), a
few rare examples appear to lie in between. Thus, our “dichotomy”
between easy and hard problems covers most, but not all, practically
relevant computational problems.19

19.4 Algorithmic Strategies for NP-Hard Problems

Suppose you’ve identified a computational problem on which the
success of your project rests. Perhaps you’ve spent the last sev-
eral weeks throwing the kitchen sink at it—all the algorithm design
paradigms you know, every data structure in the book, all the for-free
primitives—but nothing works. Finally, you realize that the issue
is not a deficiency of ingenuity on your part, it’s the fact that the
problem is NP-hard. Now you have an explanation of why your weeks
of effort have come to naught, but that doesn’t diminish the problem’s
significance to your project. What should you do?

19.4.1 General, Correct, Fast (Pick Two)

The bad news is that NP-hard problems are ubiquitous; right now,
one might well be lurking in your latest project. The good news is that
NP-hardness is not a death sentence. NP-hard problems can often

17Examples of running time bounds that are super-polynomial but subexpo-
nential in the input size n include nlog2 n and 2

p
n.

18None of the computational problems studied in this book series require more
than exponential time to solve, but other problems do. One famous example is
the “halting problem,” which can’t be solved in any finite (let alone exponential)
amount of time; see also Section 23.1.2.

19Two important problems that are believed to be neither polynomial-time
solvable nor NP-hard are factoring (finding a non-trivial factor of an integer or
determining that none exist) and the graph isomorphism problem (determining
whether two graphs are identical up to a renaming of the vertices). Subexponential-
time (but not polynomial-time) algorithms are known for both problems.
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(but not always) be solved in practice, at least approximately, through
sufficient investment of resources and algorithmic sophistication.

NP-hardness throws down the gauntlet to the algorithm designer
and tells you where to set your expectations. You should not expect
a general-purpose and always-fast algorithm for an NP-hard problem,
akin to those we’ve seen for problems such as sorting, shortest paths, or
sequence alignment. Unless you’re lucky enough to face only unusually
small or well-structured inputs, you’re going to have to work pretty
hard to solve the problem, and possibly also make some compromises.

What kinds of compromises? NP-hardness rules out algorithms
with the following three desirable properties (assuming the P 6= NP
conjecture):

Three Properties (You Can’t Have Them All)

1. General-purpose. The algorithm accommodates all
possible inputs of the computational problem.

2. Correct. For every input, the algorithm correctly
solves the problem.

3. Fast. For every input, the algorithm runs in polyno-
mial time.

Accordingly, you can choose from among three types of compromises:
compromising on generality, compromising on correctness, and com-
promising on speed. All three strategies are useful and common in
practice.

The rest of this section elaborates on these three algorithmic
strategies; Chapters 20 and 21 are deep dives into the latter two.
As always, our focus is on powerful and flexible algorithm design
principles that apply to a wide range of problems. You should take
these principles as a starting point and run with them, guided by
whatever domain expertise you have for the specific problem that you
need to solve.

19.4.2 Compromising on Generality

One strategy for making progress on an NP-hard problem is to give
up on general-purpose algorithms and focus instead on special cases
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of the problem relevant to your application. In the best-case scenario,
you can identify domain-specific constraints on inputs and design an
algorithm that is always correct and always fast on this subset of
inputs. Graduates of the dynamic programming boot camp in Part 3
have already seen two examples of this strategy.

Weighted independent set. In this problem, the input is an
undirected graph G = (V,E) and a nonnegative weight wv for each
vertex v 2 V ; the goal is to compute an independent set S ✓ V
with the maximum-possible sum

P
v2S wv of vertex weights, where

an independent set is a subset S ✓ V of mutually non-adjacent ver-
tices (with (v, w) /2 E for every v, w 2 S). For example, if edges
represent conflicts (between people, courses, etc.), independent sets
correspond to conflict-free subsets. This problem is NP-hard in gen-
eral, as we’ll see in Section 22.5. The special case of the problem
in which G is a path graph (with vertices v1, v2, . . . , vn and edges
(v1, v2), (v2, v3), . . . , (vn�1, vn)) can be solved in linear time using a
dynamic programming algorithm. This algorithm can be extended to
accommodate all acyclic graphs (see Problem 16.6 of Part 3).

Knapsack. In this problem, the input is specified by 2n+ 1 posi-
tive integers: n item values v1, v2, . . . , vn, n item sizes s1, s2, . . . , sn,
and a knapsack capacity C. The goal is to compute a subset
S ✓ {1, 2, . . . , n} of items with the maximum-possible sum

P
i2S vi of

values, subject to having total size
P

i2S si at most C. In other words,
the objective is to make use of a scarce resource in the most valuable
way possible.20 This problem is NP-hard, as we’ll see in Section 22.8
and Problem 22.7. There is an O(nC)-time dynamic programming
algorithm for the problem; this is a polynomial-time algorithm in the
special case in which C is bounded by a polynomial function of n.

A Polynomial-Time Algorithm for Knapsack?

Why doesn’t the O(nC)-time algorithm for the knap-
sack problem refute the P 6= NP conjecture? Because
this is not a polynomial-time algorithm. The input

20For example, on which goods and services should you spend your paycheck
to get the most value? Or, given an operating budget and a set of job candidates
with differing productivity levels and requested salaries, whom should you hire?
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size—the number of keystrokes needed to specify the
input to a computer—scales with the number of dig-
its in a number, not the magnitude of a number. It
doesn’t take a million keystrokes to communicate the
number “1,000,000”—only 7 (or 20 if you’re working
base-2). For example, in an instance with n items,
knapsack capacity 2n, and all item values and sizes
at most 2n, the input size is O(n2)—O(n) numbers
with O(n) digits each—while the running time of
the dynamic programming algorithm is exponentially
larger (proportional to n · 2n).

The algorithmic strategy of designing fast and correct algorithms
(for special cases) uses the entire algorithmic toolbox that we de-
veloped in Parts 1–3. For this reason, no chapter of this book is
dedicated to this strategy. We will, however, encounter along the way
further examples of polynomial-time solvable special cases of NP-hard
problems, including the traveling salesman, satisfiability, and graph
coloring problems (see Problems 19.8 and 21.12).

19.4.3 Compromising on Correctness

The second algorithmic strategy, which is particularly popular in
time-critical applications, is to insist on generality and speed at the
expense of correctness. Algorithms that are not always correct are
sometimes called heuristic algorithms.21

Ideally, a heuristic algorithm is “mostly correct.” This could mean
one or both of two things:

Relaxations of Correctness

1. The algorithm is correct on “most” inputs.22

2. The algorithm is “almost correct” on every input.

21In Parts 1–3, there is exactly one example of a mostly-but-not-always-correct
solution: bloom filters, a small-space data structure that supports super-fast
insertions and lookups, at the expense of occasional false positives.

22For example, one typical implementation of a bloom filter has a 2% false
positive rate, with 98% of lookups answered correctly.
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The second property is easiest to interpret for optimization problems,
in which the goal is to compute a feasible solution (like a traveling
salesman tour) with the best objective function value (like the min-
imum total cost). “Almost correct” then means that the algorithm
outputs a feasible solution with objective function value close to the
best possible, like a traveling salesman tour with total cost not much
more than that of an optimal tour.

Your existing algorithmic toolbox for designing fast exact algo-
rithms is directly useful for designing fast heuristic algorithms. For
example, Sections 20.1–20.3 describe greedy heuristics for problems
ranging from scheduling to influence maximization in social networks.
These heuristic algorithms come with proofs of “approximate correct-
ness” guaranteeing that, for every input, the objective function value
of the algorithm’s output is within a modest constant factor of the
best-possible objective function value.23

Sections 20.4–20.5 augment your toolbox with the local search
algorithm design paradigm. Local search and its generalizations are
unreasonably effective in practice at tackling many NP-hard problems,
including the TSP, even though local search algorithms rarely possess
compelling approximate correctness guarantees.

19.4.4 Compromising on Worst-Case Running Time

The final strategy is appropriate for applications in which you cannot
afford to compromise on correctness and are therefore unwilling to
consider heuristic algorithms. Every correct algorithm for an NP-
hard problem must run in super-polynomial time on some inputs
(assuming the P 6= NP conjecture). The goal, therefore, is to design
an algorithm that is as fast as possible—at a minimum, one that
improves dramatically on naive exhaustive search. This could mean
one or both of two things:

Relaxations of Polynomial Running Time

1. The algorithm typically runs quickly (for example, in
polynomial time) on the inputs that are relevant to

23Some authors call such algorithms “approximation algorithms” while reserving
the term “heuristic algorithms” for algorithms that lack such proofs of approximate
correctness.
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your application.

2. The algorithm is faster than exhaustive search on every
input.

In the second case, we should still expect the algorithm to run in
exponential time on some inputs—after all, the problem is NP-hard.
For example, Section 21.1 employs dynamic programming to beat
exhaustive search for the TSP, reducing the running time from O(n!)
to O(n2 · 2n), where n is the number of vertices. Section 21.2 com-
bines randomization with dynamic programming to beat exhaustive
search for the problem of finding long paths in graphs (with running
time O((2e)k · m) rather than O(nk), where n and m denote the
number of vertices and edges in the input graph, k the target path
length, and e = 2.718 . . .).

Making progress on relatively large instances of NP-hard prob-
lems typically requires additional tools that do not possess better-
than-exhaustive-search running time guarantees but are unreasonably
effective in many applications. Sections 21.3–21.5 outline how to
stand on the shoulders of experts who, over several decades, have
developed remarkably potent solvers for mixed integer programming
(“MIP”) and satisfiability (“SAT”) problems. Many NP-hard optimiza-
tion problems (such as the TSP) can be encoded as mixed integer
programming problems. Many NP-hard feasibility-checking problems
(such as checking for a conflict-free assignment of classes to classrooms)
are easily expressed as satisfiability problems. Whenever you face
an NP-hard problem that can be easily specified as a MIP or SAT
problem, try applying the latest and greatest solvers to it. There’s
no guarantee that a MIP or SAT solver will solve your particular
instance in a reasonable amount of time—the problem is NP-hard,
after all—but they constitute cutting-edge technology for tackling
NP-hard problems in practice.

19.4.5 Key Takeaways

If you’re shooting for level-1 knowledge of NP-hardness (Section 19.2),
the most important things to remember are:
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Three Facts About NP-Hard Problems

1. Ubiquity: Practically relevant NP-hard problems are
everywhere.

2. Intractability: Under a widely believed mathematical
conjecture, no NP-hard problem can be solved by any
algorithm that is always correct and always runs in
polynomial time.

3. Not a death sentence: NP-hard problems can often
(but not always) be solved in practice, at least approx-
imately, through sufficient investment of resources and
algorithmic sophistication.

19.5 Proving NP-Hardness: A Simple Recipe

How can you recognize NP-hard problems when they arise in your
own work, so that you can adjust your ambitions accordingly and
abandon the search for an algorithm that is general-purpose, correct,
and fast? Nobody wins if you spend weeks or months of your life
inadvertently trying to refute the P 6= NP conjecture.

First, know a collection of simple and common NP-hard problems
(like the 19 problems in Chapter 22); in the simplest scenario, your
application will literally boil down to one of these problems. Second,
sharpen your ability to spot reductions between computational prob-
lems. Reducing one problem to another can spread computational
tractability from the latter to the former. Turning this statement on
its head, such a reduction can also spread computational intractability
in the opposite direction, from the former problem to the latter. Thus,
to show that a computational problem that you care about is NP-hard,
all you need to do is reduce a known NP-hard problem to it.

The rest of this section elaborates on these points and provides
one simple example; for a deep dive, see Chapter 22.

19.5.1 Reductions

Any problem B that is at least as hard as an NP-hard problem A is
itself NP-hard. The phrase “at least as hard as” can be formalized
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